

PG - 610

IV Semester M.Sc. Degree Examination, June 2017 (NS) (2010-11 Scheme) (Repeaters) **CHEMISTRY**

C 402 - OC : Stereochemistry and Retrosynthetic Analysis

Time: 3 Hours Max. Marks: 80

Instruction: Answer question 1 and any five of the remaining.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

a) Sketch a retrosynthetic scheme for the following:

b) Outline the retrosynthetic route involving Wittig and Diels-Alders reactions for the following:

c) Identify the optically active isomers in the following pair and assign R/S configuration:

$$\frac{H}{H} c = c = c$$

$$H$$

d) Explain whether the following compound can be resolved or not?

e) Suggest a method for the following conversion:

- f) What are helical enantiomers? Illustrate their configurational nomenclature.
- g) Assign with explanation, configurations of the chiral carbons of the following compound:

- h) Give any two examples of chemoselective reactions with equations.
- i) Write the structure of the product formed in the following reaction:

j) Give a method for the synthesis of the following ring compound through a cycloaddition reaction :

k) Demonstrate, with equation, the use of the following compound for the protection of a functional group:

- I) Give an example for 1, 3-diX disconnection.
- 2. a) What is the rule of optical superposition? Explain the use of Mill's rule in the determination of configuration with relevant examples.
 - b) Explain the strain in the conformation of bicyclo[3.3.1] nonane. How is it related to adamantane?
 - c) Write neatly and clearly identify all the four stereoisomers of hepta-2, 3, 5-triene (with proper stereochemical notations such as R, S, E, Z etc.) (4+4+4=12)
- 3. a) Discuss the optical activity of arsenic and sulphur compounds.
 - b) Give the total synthesis of fredericamycin A. (6+6=12)
- 4. a) Explain the use of octant rule in the determination of absolute configuration of decalones.
 - b) Outline the retrosynthetic analysis and the corresponding synthesis of the following compounds:

- 5. a) Give any two methods for the generation of anion of acetylene and their reactions with RX and epoxide with suitable equations.
 - b) Explain the use of aliphatic nitro compounds in organic synthesis. (6+6=12)
- 6. a) Give a suitable synthesis for the following:

- b) Illustrate the use of the following as protecting groups in organic synthesis:
 - i) MEM group
 - ii) FMOC group.

(6+6=12)

- 7. a) Give the retrosynthetic analysis of Vitamin D.
 - b) Write a note on the following:
 - i) Hydrolysis of medium sized ring epoxides.
 - ii) FGI.

(5+7=12)